数学分析是综合性大学数学系和统计科学系的一门主干基础课和必修课,本课程的目的是为后继课程提供必要的知识,同时通过本课程的教学,锻炼和提高学生的思维能力,培养学生掌握分析问题和解决问题的思想方法。本课程不仅对许多后继课程的学习有直接影响,而且对学生基本功的训练与良好素质的培养起着十分重要的作用。
该课程讲授为三个学期,周学时分别为6、4、4,共计14个学分。具体内容为:
一元微积分:数集与函数、数列极限、函数极限、函数的连续性、导数和微分、微分中值定理及其应用、实数的完备性、不定积分、定积分、定积分的应用、反常积分、数项级数、函数列与函数项级数、幂级数、Fourier级数。
多元微积分:多元函数的极限与连续、多元函数微分学、隐函数定理及其应用、含参量积分、曲线积分、重积分、曲面积分等。
数学分析与另外两门基础课(高等代数、解析几何)相互协调,并以其自身为主干构成现代数学各分支的共同基础。几乎所有专业课都需要该课支撑。作为数学分析典型问题的精化和深化,可配置课程“实数构造理论”、“分析引论”、“场论”等;其后续课程有“实变函数”、“复变函数”、“泛函分析”、“点集拓扑”等。它是学习“常微分方程”、“偏微分方程”、“概率论”、“数学模型”等应用性较强课程必备的直接基础,也对“数值计算”、“数学实验”、逻辑学、计算科学等学科的学习有着潜在的深远影响。
|